Data Structures and Algorithm Analysis

14

Dr. Syed Asim Jalal
Department of Computer Science
University of Peshawar

N
Bubble Sort

= Bubble sort is a simple sorting algorithm.

m This sorting algorithm is a comparison based algorithm
In which each pair of adjacent elements is compared and
the elements are swapped if they are not in order.

= [t “Bubbles” the largest value to the end

= Although the algorithm is simple, it is too slow and
Impractical for most problems

J
"Bubbling Up" the Largest Element

m Traverse a collection of elements

Move from the front to the end

“Bubble” the largest value to the end using pair-
wise comparisons and swapping

77 42 35 12 101 5

N
"Bubbling Up" the Largest Element

m Traverse a collection of elements
Move from the front to the end

"Bubble” the largest value to the end
using pair-wise comparisons and swapping

12 101 5

N
"Bubbling Up" the Largest Element

m Traverse a collection of elements
Move from the front to the end

"Bubble” the largest value to the end
using pair-wise comparisons and swapping

101 5

N
"Bubbling Up" the Largest Element

m Traverse a collection of elements
Move from the front to the end

"Bubble” the largest value to the end
using pair-wise comparisons and swapping

42 35

.
"Bubbling Up" the Largest Element

m Traverse a collection of elements
Move from the front to the end

"Bubble” the largest value to the end
using pair-wise comparisons and swapping

42 35 12 101 5

No need to swap

"Bubbling Up" the Largest Element

m Traverse a collection of elements
Move from the front to the end

"Bubble” the largest value to the end
using pair-wise comparisons and swapping

42

35

12

ol
"Bubbling Up" the Largest Element
m Traverse a collection of elements

Move from the front to the end

"Bubble” the largest value to the end
using pair-wise comparisons and swapping

1 2 3 4 5 6

42 35 12 7 5 101

Largest value correctly placed

-2 (45 | 0 |11 -9
I |
-2 |45 | 0 [11 | -9
1
-2 | o |45 |11 | -9
A
-2 1] 11 |45 | -9
3
-2 |0 |12 |-9 |45
Step 1

<2 | O |11 | -9 | 45 2| D0 |-9 |11 dSI
=2 | O |11 | -9 | 45 =2 | 0 | -8 |11 -H-I
(I S
-2 | 0 |11 | -9 | 45 2 |- | 0 |11 | 45
B
-2 | D | -9 |11 | 45
Stop £ Steap 3

Figure: Working of Bubble zort algorithm

=2 |-9 | 0 |11 |45
-8 | -2 | 0 |11 | 45
Step 4

10

Reducing the Number of Comparisons in each
pass

1 2 3 4 5 6
1 2 3 4 5 6

o]

5

4 77 ‘ 101 ‘

5

= = [5 [= 7 o]
12 35‘42‘77‘101‘

= Bubble pass requires n-1 passes over the array to
sort the array.

® In each pass every adjacent elements a[i] and a[i+1]
are compared.

= In each pass we have n-k comparisons, where Kk is
the kth pass.

= Total comparisons are

~18tpass: n-1 comparisons
2" pass: n-2, comparisons
VoL

v Last pass . 1 comparison

i
Bubble Sort Algorithm

Algorithm for sorting an Array ‘A’ of size ‘N’.

BUBBLESORT(A, N)
for passNo=1 to N -1

{
for] = 0 to N-1-passNo
if A[j] > A[j+1]
then exchange A[j] <> A[j+1]

13

int main{)

{

int a[5] = {5,4,3,2,1};
int n=5;
int temp=8;

for (int x=0; x<n; xX++)

printf("\nkd", a[x]);

for (int i=0; i<n-1; i++)
for (int j=@; j<n-i-1; j++)

{

EF (a[j] > a[j+1])
temp = a[j+1];
al3+1] = al3l;
a[j] = temp;

I

}

printf("\nAfter Sorting”);
for (int x=0; x<n; x++)
printf("\nkd", a[x]);

printf("\n");
return o;

14

Time Complexity of Bubble
Sort

(Analysis of Bubble Sort)

JE
Bubble Sort - Analysis

Algorithm for sorting an Array ‘A’ of size “‘N’.

BUBBLESORT(A, N)
for passNo=1 to N -1

{
for j = 0 to N- 1-passNo
if A[j] = A[j+1]
then exchange A[j] & A[j+1]

How many times each
statement Is executed?

N times

?7?
?7?

?7?

16

JE
Bubble Sort - Analysis

Algorithm for sorting an Array ‘A’ of size “‘N’.

BUBBLESORT(A, N)
for passNo=1 to N -1

{
for j = 0 to N- 1-passNo
if A[j] = A[j+1]
then exchange A[j] & A[j+1]

The number of
times the inner IF
statement Is

executed will give
us the running time
or time complexity
of the algorithm.

This represents total
comparisons

17

Bubble Sort - Analysis

BUBBLESORT(A, N)
for passNo=1 to N -1

{
for j = 0 to N- 1-passNo
if A[j] > A[j+1]
then exchange A[j] & A[j+1]

Total comparisons (IF
statement executed) In
each pass:

v 15T pass: n-1
v 2" pass: n-2
v 3rdpass: n-3
v

v N-1thpass : n-(n-1) =1

It makes the following series.
(n-1), (n-2), (n-3),, 3,2, 1

18

What will be the total comparisons in n-1 passes?

We will sum the following series to get the total comparison in n-1
passes of bubble sort.

(n-1), (n-2), (n-3),, 3,2, 1

(n-D)+(n-2)+(n=-3)+---+(n—=(n-2))+(n—(n-1))
=1+2+3+---+n-1

-3
_(n=-)((n-1)+1)
- 2
_n(n-1)

2

=0(n?)

19

Selection sort

20

"
Selection Sort

Basic Concept

Find the smallest element in the array
Exchange it with the element in the first
position

Find the second smallest element and
exchange it with the element in the second
position

Continue until the array is sorted

JE
Example

22

ol
Selection Sort
SELECTION-SORT(A)
n <« length[A]
forj<—0ton-2
{ IndexOfsmallest « j
fori— j+1ton-1
{ ifA[i] < A[IndexOfsmallest]
then IndexOfsmallest «— 1

¥
exchange A[j] «» A[IndexOfsmallest]

23

ol
Selection Sort
SELECTION-SORT(A)
n <« length[A]
forj<—0ton-2
{ IndexOfsmallest « j
fori— j+1ton-1
{ ifA[i] < A[IndexOfsmallest]
then IndexOfsmallest «— 1

¥
exchange A[j] «» A[IndexOfsmallest]

24

Selection Sort Analysis

SELECTION-SORT(A)
n <« length[A]
forj<—0Oton-2
{ IndexOfsmallest «— j
fori— j+l1ton-1
{ /if All] < A[IndexOfsmallest])

then IndexOfsmallest <« 1
N Y,

¥
exchange A[j] «» A[IndexOfsmallest]

25

" A
Selection Sort - Analysis

Iteration No. times array comparison performed
of outer loop during this iteration of outer loop

0 n-1

1 n-2

2 n-3

last 1

So number of comparisons 1s
1+2+3+ ... t(-)+(m-H)=n*m-1)/2= n42 - n2
As n gets large, the term n? dominates. We say the number if

comparisons is proportional to n* and that this is a quadratic
algorithm.

26

ol
Suppose there are total 6 values, thatis, n=6
forj€<0ton-2 N-1
IndexOfsmallest & j N-2
for{ i=j+1, n-1) i Series
=0 1,2,3,4,5,6 8 nl
=1 2,3,4,5,6 5
1=2 3,456 4
1=3 4,5,6 3
1=4 5,6 2 2
Series
if Ali] < AllndexCOfsmallest] J=0 1,2,3,4,5 5 [N-1)
then IndexOfsmallest <1 J=1 2,3,4,5 4
1=2 3,4,5 3
J=3 4,5 2
=4 5 1 1
exchange A[j] <= A[IndexOfsmallest] N-2

27

	Slide Number 1
	Bubble Sort
	"Bubbling Up" the Largest Element
	"Bubbling Up" the Largest Element
	"Bubbling Up" the Largest Element
	"Bubbling Up" the Largest Element
	"Bubbling Up" the Largest Element
	"Bubbling Up" the Largest Element
	"Bubbling Up" the Largest Element
	Slide Number 10
	Reducing the Number of Comparisons in each pass
	Slide Number 12
	Bubble Sort Algorithm
	Slide Number 14
	Slide Number 15
	Bubble Sort - Analysis
	Bubble Sort - Analysis
	Bubble Sort - Analysis
	What will be the total comparisons in n-1 passes?
	Slide Number 20
	Selection Sort
	Example
	Selection Sort
	Selection Sort
	Selection Sort Analysis
	Selection Sort - Analysis
	Slide Number 27

