Data Structures and Algorithm Analysis

14

Department of Computer Science
University of Peshawar

Bubble Sort

- Bubble sort is a simple sorting algorithm.
- This sorting algorithm is a comparison based algorithm in which each pair of adjacent elements is compared and the elements are swapped if they are not in order.
- It "Bubbles" the largest value to the end
- Although the algorithm is simple, it is too slow and impractical for most problems

"Bubbling Up" the Largest Element

- Traverse a collection of elements
- Move from the front to the end "Bubble" the largest value to the end using pairwise comparisons and swapping

"Bubbling Up" the Largest Element

- Traverse a collection of elements

Move from the front to the end
" "Bubble" the largest value to the end using pair-wise comparisons and swapping

"Bubbling Up" the Largest Element

- Traverse a collection of elements

Move from the front to the end
"Bubble" the largest value to the end using pair-wise comparisons and swapping

"Bubbling Up" the Largest Element

- Traverse a collection of elements

Move from the front to the end
"Bubble" the largest value to the end using pair-wise comparisons and swapping

"Bubbling Up" the Largest Element

- Traverse a collection of elements

Move from the front to the end
"Bubble" the largest value to the end using pair-wise comparisons and swapping

No need to swap

"Bubbling Up" the Largest Element

- Traverse a collection of elements

Move from the front to the end
" "Bubble" the largest value to the end using pair-wise comparisons and swapping

"Bubbling Up" the Largest Element

- Traverse a collection of elements

Move from the front to the end
"Bubble" the largest value to the end using pair-wise comparisons and swapping

Largest value correctly placed

Step 2

Step 3

-2 -9 0 11 45
-9 -2 0 11 45

Step 4

Figure: Working of Bubble sort algorithm

Reducing the Number of Comparisons in each pass

- Bubble pass requires n-1 passes over the array to sort the array.
- In each pass every adjacent elements a[i] and a[i+1] are compared.
- In each pass we have n-k comparisons, where k is the kth pass.
- Total comparisons are
$\checkmark 1^{\text {st }}$ pass: $n-1$ comparisons
$\checkmark 2^{\text {nd }}$ pass: $n-2$, comparisons
\checkmark Last pass: 1 comparison

Bubble Sort Algorithm

Algorithm for sorting an Array ' A ' of size ' N '.

BUBBLESORT(A, N)
for passNo = 1 to $\mathrm{N}-1$
\{
for $\mathrm{j}=0$ to $\mathrm{N}-1$-passNo

$$
\text { if } \quad A[j]>A[j+1]
$$ then exchange $\mathrm{A}[\mathrm{j}] \leftrightarrow \mathrm{A}[\mathrm{j}+1]$

\}
int main()

```
int a[5] = {5,4,3,2,1};
int n=5;
int temp=0;
```

for (int $x=0 ; x<n ; x++$)
printf("\n\%d", a[x]);
for (int $i=0 ; i<n-1 ; i++$)
for (int $j=0 ; j<n-i-1 ; j++$)
\{
if (a[j] > a[j+1])
\{
temp $=a[j+1] ;$
$a[j+1]=a[j] ;$
$a[j]=$ temp;

1
2
3
4
5

Time Complexity of Bubble Sort

(Analysis of Bubble Sort)

Bubble Sort - Analysis

Algorithm for sorting an Array ' A ' of size ' N '.

BUBBLESORT(A, N)
How many times each statement is executed?
for passNo $=1$ to $N-1 \quad N$ times
$\{$
for $\mathrm{j}=0$ to $\mathrm{N}-1$-passNo ???
if $A[j]>A[j+1] \quad$???
then exchange $\mathbf{A}[\mathbf{j}] \leftrightarrow \mathbf{A}[\mathbf{j}+1] \quad ? ? ?$
\}

Bubble Sort - Analysis

Algorithm for sorting an Array ' A ' of size ' N '.

BUBBLESORT(A, N)
for passNo = 1 to $\mathrm{N}-1$
\{

$$
\text { for } \mathrm{j}=0 \text { to } \mathrm{N}-1 \text { - passNo }
$$

if $\mathrm{A}[\mathrm{j}]>\mathrm{A}[\mathrm{j}+1]$
then exchange $\mathrm{A}[\mathrm{j}] \leftrightarrow \mathrm{A}[\mathrm{j}+1]$
\}
The number of times the inner IF statement is
executed will give us the running time or time complexity of the algorithm.
This represents total
comparisons

Bubble Sort - Analysis

BUBBLESORT(A, N)
for $\operatorname{passNo}=1$ to $\mathrm{N}-1$
\{

$$
\text { for } \mathrm{j}=0 \text { to } \mathrm{N}-1-\text { passNo }
$$

$$
\text { if } \quad \mathrm{A}[\mathrm{j}]>\mathrm{A}[\mathrm{j}+1]
$$

$$
\text { then exchange } \mathbf{A}[\mathrm{j}] \leftrightarrow \mathbf{A}[\mathbf{j}+1]
$$

Total comparisons (IF statement executed) in each pass:

$\checkmark 1^{\text {st }}$ pass: $n-1$
$\checkmark 2^{\text {nd }}$ pass: $n-2$
\checkmark 3rd pass: $n-3$
$\checkmark N-1^{\text {th }}$ pass: $n-(n-1)=1$

It makes the following series.

$$
(n-1),(n-2),(n-3), \ldots, 3,2,1
$$

What will be the total comparisons in $\mathrm{n}-1$ passes?

We will sum the following series to get the total comparison in $\mathrm{n}-1$ passes of bubble sort.

$$
\text { (n-1), (n-2), (n-3),, 3, 2, } 1
$$

$$
\begin{aligned}
& (n-1)+(n-2)+(n-3)+\cdots+(n-(n-2))+(n-(n-1)) \\
& =1+2+3+\cdots+n-1 \\
& =\sum_{1}^{n-1} i \\
& =\frac{(n-1)((n-1)+1)}{2} \\
& =\frac{n(n-1)}{2} \\
& =O\left(n^{2}\right)
\end{aligned}
$$

Selection sort

Selection Sort

Basic Concept

- Find the smallest element in the array
- Exchange it with the element in the first position
- Find the second smallest element and exchange it with the element in the second position
- Continue until the array is sorted

Example

1	2	3	4	6	9	8

1	2	3	4	6	8	9

1	2	3	4	6	8	9

Selection Sort

 SELECTION-SORT(A)$\mathrm{n} \leftarrow$ length $[\mathrm{A}]$
for $\mathrm{j} \leftarrow 0$ to $\mathrm{n}-2$
\{ IndexOfsmallest \leftarrow j
for $\mathrm{i} \leftarrow \mathbf{j}+\mathbf{1}$ to $\mathbf{n}-\mathbf{1}$
\{ if $\mathrm{A}[\mathrm{i}]$ < A[IndexOfsmallest] then IndexOfsmallest \leftarrow i
\}
exchange $\mathrm{A}[\mathrm{j}] \leftrightarrow \mathrm{A}[$ IndexOfsmallest $]$
\}

Selection Sort

 SELECTION-SORT(A)$\mathrm{n} \leftarrow$ length $[\mathrm{A}]$
for $\mathrm{j} \leftarrow 0$ to $\mathbf{n - 2}$
\{ IndexOfsmallest \leftarrow j
for $\mathrm{i} \leftarrow \mathbf{j}+\mathbf{1}$ to $\mathbf{n}-\mathbf{1}$
\{ if $\mathrm{A}[\mathrm{i}]$ < A[IndexOfsmallest] then IndexOfsmallest \leftarrow i
\}
exchange $\mathrm{A}[\mathrm{j}] \leftrightarrow \mathrm{A}[$ IndexOfsmallest $]$
\}

Selection Sort Analysis

SELECTION-SORT(A)

$\mathrm{n} \leftarrow$ length[A]
for $\mathrm{j} \leftarrow 0$ to $\mathbf{n}-\mathbf{2}$
\{ IndexOfsmallest $\leftarrow \mathrm{j}$

```
for i}\leftarrow\mathbf{j}+\mathbf{1}\mathrm{ to n-1
{ if A[i] < A[IndexOfsmallest]
    then IndexOfsmallest }\leftarrow\textrm{i
```

\}
exchange $\mathrm{A}[\mathrm{j}] \leftrightarrow \mathrm{A}[$ IndexOfsmallest $]$
\}

Selection Sort - Analysis

Iteration
of outer loop
0
1
2

No. times array comparison performed during this iteration of outer loop

$$
\mathrm{n}-1
$$

$$
\mathrm{n}-2
$$

$$
\mathrm{n}-3
$$

last
So number of comparisons is

$$
1+2+3+\ldots+(\mathrm{n}-2)+(\mathrm{n}-1)=\mathrm{n}^{*}(\mathrm{n}-1) / 2=\mathrm{n}^{2} / 2-\mathrm{n} / 2
$$

As n gets large, the term n^{2} dominates. We say the number if comparisons is proportional to n^{2} and that this is a quadratic algorithm.

Suppose there are total 6 values, that is, $\mathrm{n}=6$

for $\mathbf{j} \leftarrow 0$ to $\mathbf{n - 2}$		N-1			
IndexOfsmallest \leftarrow		N-2			
for ($\mathrm{i}=\mathrm{j}+1, \mathrm{n}-1$)		j	i		Series
		$\mathrm{J}=0$	1,2,3,4,5,6	6	n-1
		$\mathrm{J}=1$	2,3,4,5,6	5	
		$\mathrm{J}=2$	3,4,5,6	4	
		$\mathrm{J}=3$	4,5,6	3	
		$\mathrm{J}=4$	5,6	2	2
					Series
if $\mathrm{A}[\mathrm{i}]<\mathrm{A}$	[IndexOfsmallest]	$\mathrm{J}=0$	1,2,3,4,5	5	($\mathrm{N}-1$)
then Ind	dexOfsmallest $\leftarrow \mathbf{i}$	$\mathrm{J}=1$	2,3,4,5	4	
		$\mathrm{J}=2$	3,4,5	3	
		$\mathrm{J}=3$	4,5	2	
		$\mathrm{J}=4$	5	1	1

exchange $\mathrm{A}[\mathrm{j}] \leftrightarrow \mathrm{A}[$ IndexOfsmallest] $\mathrm{N}-2$

